Pb Bioaccumulation in Deer Mice: Competition and Antagonism by Co-Occurring Essential Metalsin Lab and Field Studies

Tobias McBride, Mike Hooper

The Institute of Environmental and Human Health
Texas Tech University

Acknowledgments

- •NIEHS ES 04696 U. Wash /TTU
- •Dr. Dale Hoff, U.S. EPA-Region 8
- •Dr. Bill Olsen, USFWS

- •Dr. Blakely Adair, U.S. EPA (2001 Wetterhahn Award Winner)
- •Dr. Kevin Reynolds, USFWS
- •Dr. Craig McFarland, US Army
- •Dr. George Cobb, TTU
- •Dr. Scott McMurry, TTU

Anaconda Copper Smelter, Montana

CERCLA
National Priorities List
(NPL) in 1983.

75 tons of metals expelled from stack DAILY.

Contaminants of Concern (COCs): As, Cd, Cu, Pb, Zn

Anaconda Smelter Superfund Site

Wildlife Assessments at the Anaconda Smelter Site

Smelter Soil Metal Concentrations (ug/g)				
Pb Cu Zn				
Low	134	309	217	
Medium	617	1201	445	
High	1480	2976	2435	

Site Mean Tissue Pb Concentrations (ug/g)				
Kidney Carcass				
Low	0.217	0.558		
Medium	0.548	1.66		
High	1.036	1.99		

CERCLA NRDA Regulations

43 CFR 11.62 Injury Determination Phase.

Delta-aminolevulinic acid dehydratase (ALAD) inhibition.

Injury has occurred when the activity level of whole blood ALAD in a sample from the population of a given species at an assessment area is significantly less than mean values for a population at a control area, and <u>ALAD depression of at least 50 percent can be measured</u>.

The ALAD Enzyme

- * Cytosolic zinc metalloenzyme, catalyzes the formation of the monopyrrole precursor in heme synthesis.
- * Enzyme activity is specifically inhibited due to a Pb displacement of one of four required Zn atoms.
- * Well characterized for a number of wildlife species, for use in Pb contamination investigations.
- * Enzyme activity shows a distinct linear relationship with increasing blood Pb concentration.

Deer Mouse ALAD Response to Lead

Unexpected lack of biomarker response.

No relationship between soil Pb and ALAD in mice

No relationship between blood Pb and ALAD

Pb Acetate Dose-Response Study

Blood ALAD Inhibition

Dose-Response Study

Decreasing activity with:

- increased Pb dose
- increased blood Pb

Unlike field data, deer mouse ALAD behaved as expected.

Binary Metal Mixtures

Zn mg/kg*d

5

135

Binary Metal Mixtures

53

Tertiary Metal Mixtures

Zn mg/kg*d Cu mg/kg*d

Modification of Blood ALAD Inhibition Binary Metal Mixtures

Modification of Blood ALAD Inhibition

Tertiary Metal Mixtures

Binary Metal Mixtures

Pb Bioaccumulation from Soil Ingestion

Soils collected from the three sites, and 0.25 mm fraction soil mixed into a powdered feed.

3% using EPA estimate for incidental ingestion by rodents by fraction stuck to food items and during preening.

(mg/kg*d)	Pb	Cu	Zn
Low	0.4	3.3	5.5
Med	2.5	10.5	7.4
High	5.2	16.3	15.9

Pb Bioaccumulation from Soil Ingestion

Progressive dose-dependent increase in Pb.

(mg/kg*d)	Pb	Cu	Zn
Low	0.4	3.3	5.5
Med	2.5	10.5	7.4
High	5.2	16.3	15.9

ALAD Response to Blood Pb Anaconda Soil Ingestion Study

ALAD Response to Blood Pb

Anaconda Soil Ingestion Study

(mg/kg*d)	Pb	Cu	Zn
Low	0.4	3.3	5.5
Med	2.5	10.5	7.4
High	5.2	16.3	15.9

ALAD Response to Blood Pb

Anaconda Soil Ingestion Study

(mg/kg*d)	Pb	Cu	Zn
Low	0.4	3.3	5.5
Med	2.5	10.5	7.4
High	5.2	16.3	15.9

Conclusions

- 1. Increased oral exposure to Zn reduces Pb uptake and accumulation, and decreases Pb-induced ALAD inhibition.
- 2. Oral exposure to Cu/Zn mixtures may result in only subtle reductions in tissue Pb accumulation, but may still notably reduce Pb-induced ALAD inhibition.
 - 3. Most importantly although ALAD inhibition does demonstrate Pb effects in field populations,
 - Zn and Cu co-exposure should be evaluated in environmental exposures of Pb, as a <u>lack</u> of ALAD inhibition does not preclude the potential of other Pb-induced health effects.